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A Gaussian Quadrature Method For The 
Numerical Solution of the Characteristic 

Initial Value Problem uxy f(x, y, u) 

By J. T. Day 

Gaussian quadrature methods have been used quite successfully in the numerical 
solution of ordinary differential equations (Cf. [1], [2]). We consider here a Gaussian 
quadrature method for the numerical solution of the characteristic initial value 
problem: 

(1) ux,= f(x, y, u) 

(1.1) u(x, 0) a (x), u(O, y) = T(y), o(0) - T(0) 

(1.2) O?x <a O? < y ? b 

Throughout this discussion we shall assume sufficient regularity conditions for 
fo a, and r so as to insure that equations (4.1), (5), (6) have meaning in any con- 
text in which they are used. We also assume that values of ux(O, y) and uy(x, 0) 
as well as a' (x) and T (x) have been calculated: techniques on how this may be 
done are discussed in [5]. 

In order to apply quadrature methods for the numerical solution of the above 
initial value problem, we convert the differential equation (1) into a system of 
integral equations. 

u(xo + h, yo + h) = u(xo + h, yo) + u(xo, y + h) - u(xo, Yo) 

(2) xo+h yo+h 

+] f(x, y, u(x, y,)) dx dy x0 Yo 

(3) x(x + ) y + ) u(xo+ h yo + (xo+ h v,u(x + , 
vY 

d 

(4) u,(xo + h, yo + h) = U(xo, yo + h) + ff(w, Yo + h, u(w, yo + h)) dw 
20 

The numerical solution of (1) over a region D{O ? x < a, 0 ? y ? b3 is to 
be carried out in a stepwise manner over a square mesh on D. The object of our 
method is that given u, ux, uy at (xO, yo), (xo + h, yo), (xo, yo + h) to calculate 
u, uX , uy at (xO + h, yo + h). 

For the evaluation of the double integral in (2) we shall use the cartesian 
product formula for the Gauss two-point rule on the interval [xo, xo + h] (Cf. 
[3], [4]). 

xo+h yo+h 4 

y (x, y, u(x, y) ) dx dy = h2/4 E f (xk , , U(Xk, Yk) 
(4.1 ) x0 0 k=1 

+ h6/4320. {Dx4f + Dy4f} (xo, yo, u(xo, yo)) + higher order terms 

(The symbols Dx and D, mean DJf = f. + fuux; DJf = f, + fuu .) 
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The points (Xk, Yk) are given by 

X= Xo + ph, y= yo + ph 

(4.2) X2 =xo+ qh, Y2 =yo+ qh 

X3 =xo + ph, y3 =yo + qh 

X4 = Xo+ qh, y4 =yo + ph 

where p = (3 - V3)/6, q = 1 - p. Hence, (2) becomes 

u(xo + h, yo + h) = u(xO + h, yo) + u(xO, yo + h) - u(xo 0 yo) 

(5) 4 

+ h 2/4, f[xk, Yk , U(Xk, Yk)] + 0(h). 
k=1 

Assuming that ux and u, have been calculated in the previous step, either from 
the given initial data or by a method such as indicated below, we have by means 
of Taylor expansions, the following estimate for u at the points (Xk, Yk). 

u(xO + sh, yo + th) = u(xo, yo) (1 -2 - t2) 

(6) + S2U(Xo + h, yo) + t2u(xo , yo + h) 

+ hs(l - s)ux(xo, yo) + ht(l - t)uy(xo, yo) 

+ sth2f [xO , yo, u(xo, yo)] + 0(h3). 

Substituting the values of U(Xk, Yk) calculated by (6) into (5), we obtain an 
approximate value for u(xo + h, yo + h) with an error of order h5. 

A bound for the local truncation error, assuming that the results from the pre- 
vious steps are exact, is given by 

I u -uc I? h5L[M/12 + L(1 + N)/6] + h6A/2160 + 0(h7). 

Here u' denotes the approximate value of u(xo + h, yo + h). 

L = Sup(lfx 1, Ify|1 IJ uf ) 

M = Sup(l uxxx |, J uyy, J) 

A = Sup(I Dx4f(x, y, u) J,J Dy4f(x, y, u) I) 

N = Sup(lu 1,Ju I!). 

The suprema are taken over x, y where (x, y) - R. 
By the use of techniques discussed in [8] and [9], it can be shown that the cumu- 

lative error for the method under discussion has the following bound at a point (x, y) 
of the square mesh on D: 

I e(x, y) I < (Io(2V/Lxy) - 1)[M/12 + L(1 + N)/6] h3. 

Here Io is the modified Bessel function of order zero (i.e., Io(x) = Jo(ix)). 
L, M, N are defined as above except that the suprema are taken over points 

(j, n) of the rectangle 0 ? t ? x, 0 < q ? y. 
This bound takes into account only the accumulative effect of the order h5 
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errors, with the additiolnal assumption that u, and u, have beenl calculated cor- 
rectly to order h3 at every poilnt of the mesh. 

Silnce we nlow have all approximate value for u at (x0 + h, yo + h), we caln 
calculate ux anld uy at (x0 + h, yo + h) by means of the trapezoidal rule or by other 
equally spaced niumerical ilntegration schemes applied to (3) and (4). In the case 
of the trapezoidal rule, we obtain an error of order h3 for u.l and uy ; moreover, we 
note that the three values of f used in calculating ux anld uy may be used in suieceed- 
ing calculations. 

We note that the number of evaluations of f over each subsquare is eight, three 
of which may be used in succeeding calculations, if storage limitations permit. The 
number of evaluations used in [5] for the solution of the more general problem ltu.,Y 
f(x, y, u, ux, u,) to the same order of accuracy is 15. 

We believe that this method would also be of value in obtainiing starting values 
for methods such as those discussed in [6]. With this point of view, we have per- 
formed calculations for the following example. 

The equation of Liouville [7]: 
2u 

ux= e 

with initial conditions 

u(x, 0) = x/2- log (1 + ex) 

TAB LE 1 
Errors* 

y 

x 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

0.25 0.29 1.10 1.74 1.97 1.91 1.68 1.46 1.28 
0.50 1.10 3.50 5.54 6.38 6.20 5.58 4.92 4.31 
0.75 2.23 6.93 11.28 13.36 13.30 12.17 10.78 9.48 
1.00 3.50 11.01 18.80 23.25 23.85 22.21 19.82 17.49 

1.25 4.66 15.16 27.46 35.89 38.32 36.53 32.97 29.17 
1.50 5.54 18.80 36.34 50.69 56.85 55.91 51.24 45.62 
1.75 6.11 21.53 44.35 66.39 79.10 80.95 75.87 68.16 
2.00 6.36 23.23 50.67 81.51 103.96 111.89 108.08 98.50 

2.25 6.36 23.93 54.84 94.41 129.59 148.21 148.99 138.71 
2.50 6.18 23.84 56.85 103.95 153.62 188.29 199.08 190.95 
2.75 5.90 23.18 57.05 109.72 173.74 229.35 257.72 247.19 
3.00 5.57 22.19 55.87 111.87 188.26 267.65 322.41 338.42 

3.25 5.24 21.04 53.81 111.05 196.57 299.57 388.71 433.70 
3.50 4.91 19.81 51.21 108.02 199.02 322.36 450.61 539.04 
3.75 4.60 18.63 48.43 103.64 196.73 335.15 502.23 647.24 
4.00 4.30 17.47 45.58 98.43 190.87 338.33 538.98 748.34 

4.25 3.99 16.32 42.72 92.86 182.70 333.66 559.13 832.45 
4.50 3.70 15.27 40.04 87.31 173.33 323.36 563.79 892.34 
4.75 3.45 14.33 37.58 81.99 163.61 309.51 555.83 925.32 
5.00 3.21 13.42 35.22 76.86 153.80 293.61 538.50 932.72 

5.25 2.97 12.55 33.01 72.04 144.30 276.93 515.21 919.17 
5.50 2.78 11.80 31.00 67.63 135.38 260.44 488.79 890.49 
5.75 2.60 11.12 29.19 63.57 127.07 244.53 461.24 852.17 
6.00 2.43 10.45 27.49 59.80 119.36 229.49 433.84 808.59 

* All errors in the table are to be multiplied by 10-8. 
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u(O, y) = y/2- log (1 + ey). 

Trhe solution of this problem is u(x, y) (x + y)/2 - log (ex + ey). 
Taking h as 0.05, we have written a program in Fortran for the CDC 1604 

comlputer at the University of California, San Diego and have found the following 
ei rors for the computation of u at the points (x, y) given below. By error w-e mean 
here the relative error, i.e., 

error- I (true value - approximate value)/true value 

As a concluding remark, we wish to point out that the techniques used here 
can be applied to the more general equation ux, = f(x, y, u, ux, us). In this 
case, one could use the quadrature formula used above and the Moore-Runge- 
Kutta method to estimate the values of u, ux, u, at the quadrature evaluation 
points. 

I am especially indebted to Prof. P. C. Hammer and A. H. Stroud for many 
discussions on the general techniques of numerical integration in more than one 
variable. 
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La Jolla, California 

1. P. C. HAMMER & J. W. HOLLINGSWORTH, "Trapezoidal methods of approximating 
solutions of differential equations," MTAC, v. 9, 1955, p. 92-96. 

2. D. MORRISON & L. STOLLER, "A method for the numerical integration of ordinary 
differential equations," MTAC, v. 12, 1958, p. 269-272. 

3. P. C. HAMMER & A. W. WYMORE, "Numerical evaluation of multiple integrals I," 
M17TA.C, v. 11, 1957, p. 59-67. 

4. J. ALBRECHT & L. COLLATZ, "Zur numerischen Auswertung mehrdimensionaler In- 
tegrale," Z. Angew. Math. Mlech., v. 38, 1958, p. 8. 

5. R. H. MOORE, "A Runge-Kutta procedure for the Goursat problem in hyperbolic partial 
differential equations," Arch. Rational Mech. Anal., v. 7, 1961, p. 37-63. 

6. W. T6RNIG, "Zur numerischen Behandlung von Anfangswertproblemen partieller 
!r~-~ n ,.cber Differentialgleichungen zweiter Ordnung in zwei unabhangigen Verander- 
! - l . i Ih. Rational Mech. Anal., v. 4,1960 p. 428-445. 

7. C. JORDAN, Cours d'Analyse, Gauthier-Villars, Paris, Third Edition, v. 3, 1915, p. 369- 
371. 

8. W. WALTER, "Fehlerabschatzungen bei hyperbolischen Differentialgleichungen," 
ltrch. Rational Mech. Anal., v. 7, 1961. p. 249-272. 

9. P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, John Wiley 
and Sons, New York, 1962. 

Gauss Elimination for Singular Matrices 
By George Shapiro 

1. Introduction. Several variations of a method of successive elimination, 
associated with the name of Gauss, are frequently used to solve systems of linear 
equationis or to invert a matrix. Multiplication of the inverse matrix by the de- 
terminant of the original matrix (which is readily available as an intermediate 
result of the Gauss elimination) yields the adjoint of the original matrix. 

Recently, the use of modular or residue class arithmetic systems for high- 
speed computers has been considered [1]. In such systems, an integer is represented 
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